کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
805324 | 905133 | 2011 | 8 صفحه PDF | دانلود رایگان |

Sequential Monte Carlo techniques are evaluated for the nonlinear Bayesian filtering problem applied to systems exhibiting rapid state transitions. When systems show a large disparity between states (long periods of random diffusion about states interspersed with relatively rapid transitions), sequential Monte Carlo methods suffer from the problem known as sample impoverishment. In this paper, we introduce the maximum entropy particle filter, a new technique for avoiding this problem. We demonstrate the effectiveness of the proposed technique by applying it to highly nonlinear dynamical systems in geosciences and econometrics and comparing its performance with that of standard particle-based filters such as the sequential importance resampling method and the ensemble Kalman filter.
Journal: Probabilistic Engineering Mechanics - Volume 26, Issue 2, April 2011, Pages 194–201