کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
805324 905133 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sequential Monte Carlo filters for abruptly changing state estimation
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Sequential Monte Carlo filters for abruptly changing state estimation
چکیده انگلیسی

Sequential Monte Carlo techniques are evaluated for the nonlinear Bayesian filtering problem applied to systems exhibiting rapid state transitions. When systems show a large disparity between states (long periods of random diffusion about states interspersed with relatively rapid transitions), sequential Monte Carlo methods suffer from the problem known as sample impoverishment. In this paper, we introduce the maximum entropy particle filter, a new technique for avoiding this problem. We demonstrate the effectiveness of the proposed technique by applying it to highly nonlinear dynamical systems in geosciences and econometrics and comparing its performance with that of standard particle-based filters such as the sequential importance resampling method and the ensemble Kalman filter.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Probabilistic Engineering Mechanics - Volume 26, Issue 2, April 2011, Pages 194–201
نویسندگان
, ,