کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8054301 | 1519449 | 2017 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Schwartz duality of the Dirac delta function for the Chebyshev collocation approximation to the fractional advection equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Singular source terms represented by the Dirac delta function are found in various applications modeling natural problems. Solutions to differential equations perturbed by such singular source terms have jump discontinuity and their high order numerical approximations suffer from the Gibbs phenomenon. We use the Schwartz duality to approximate the Dirac delta function existent in fractional differential equations. The singular source term is approximated by the fractional derivative of the Heaviside function. We provide a Chebyshev spectral collocation method for solving the fractional advection equation with the singular source term and show that the Schwartz duality yields the consistent formulation resulting in vanishing Gibbs phenomenon. The numerical results show that the proposed approximation of the Dirac delta function is efficient and accurate, particularly for linear problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics Letters - Volume 64, February 2017, Pages 205-212
Journal: Applied Mathematics Letters - Volume 64, February 2017, Pages 205-212
نویسندگان
He Yang, Jingyang Guo, Jae-Hun Jung,