کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8054356 | 1519450 | 2017 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Standing waves with a critical frequency for nonlinear Schrödinger equations involving critical growth
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider the following singularly perturbed Schrödinger equation âε2Îu+V(x)u=f(u),uâH1(RN), where Nâ¥3, V is a nonnegative continuous potential and the nonlinear term f is of critical growth. In this paper, with the help of a truncation approach, we prove that if V has a positive local minimum, then for small ε the problem admits positive solutions which concentrate at an isolated component of positive local minimum points of V as εâ0. In particular, the potential V is allowed to be either compactly supported or decay faster than â£xâ£â2 at infinity. Moreover, a general nonlinearity f is involved, i.e., the monotonicity of f(s)/s and the Ambrosetti-Rabinowitz condition are not required.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics Letters - Volume 63, January 2017, Pages 53-58
Journal: Applied Mathematics Letters - Volume 63, January 2017, Pages 53-58
نویسندگان
Jianjun Zhang,