کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
807611 | 905575 | 2007 | 9 صفحه PDF | دانلود رایگان |

In this paper, the fracture strength of a cracked suspension bridge wire is determined based on linear elastic fracture mechanics (LEFM). The wire is 5 mm in diameter, with an original ultimate strength of 1725 MPa and ultimate elongation that ranges between 5.5% and 6%. The average value of 65.7MPam for the wire fracture toughness, KC, was recently evaluated by the author. The state of practice is to use the ultimate strength of the cracked wire as obtained from tensile tests. This approach may overestimate the strength of the wire due to possible delamination and crack tip plasticity. A case study for a group of in situ wire breaks retrieved from a suspension bridge cable is presented. The failure analysis is performed based on both the fracture toughness criterion and the net section theory. The fracture toughness criterion produced more realistic results for the fracture strength of the wire. The decline in the fracture toughness and the corresponding reduction in the fracture strength of cracked degraded wire are predicted making use of the strain energy density criterion.
Journal: Theoretical and Applied Fracture Mechanics - Volume 48, Issue 2, October 2007, Pages 152–160