کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
807700 | 905629 | 2013 | 48989 صفحه PDF | دانلود رایگان |

Intergranular slow crack growth in zirconia polycrystal is described with a cohesive zone model that simulate mechanically the reaction-rupture mechanism underlying stress and environmentally assisted failure. A 2D polycrystal is considered with cohesive surfaces inserted along the grain boundaries. The anisotropic elastic modulus and grain-to-grain misorientation are accounted for together with an initial stress state related to the processing. A minimum load threshold is shown to originate from the onset of the reaction-rupture mechanism to proceed where a minimum traction is reached locally and from the magnitude of the initial compression stresses. This work aims at providing reliable predictions in long lasting applications of ceramics.
Journal: Theoretical and Applied Mechanics Letters - Volume 3, Issue 5, 2013, Article 051001