کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
808421 | 905700 | 2013 | 10995 صفحه PDF | دانلود رایگان |

Contact-impact processes occur at most cases in multibody systems. Sub-periods and sub-regional methods are frequently used recently, and different coordinates are introduced in both of the approaches. However, the sub-regional method seems to be more effective. Floating frame of reference formulation is widely used for contact treatment, which describes displacements by the rigid body motion and a small superposed deformation, and the coordinates depicting the deformation include finite element nodal coordinates and modal coordinates, the former deals with the contact/impact region, and the later describes the non-contact region. In this paper, free interface substructure method is used in modeling, and the dynamic equation of a single body is derived. Then, using the Lagrange equation of the first kind, the dynamic equations of multibody systems are established. Furthermore, contact-impact areas are treated through additional constraint equations and Lagrange multipliers. Using such approach, the number of system coordinates and the dimensions of mass matrix are significantly reduced with the modal truncation, therefore both of the efficiency and accuracy are guaranteed. Finite element method in the local contact region can deal with contact/impact between arbitrarily complex interfaces, whereas, additional contact constraints used in the nodal description region can avoid the customized parameters that are used in the continuous force model.
Journal: Theoretical and Applied Mechanics Letters - Volume 3, Issue 1, 2013, Article 013007