کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8120924 | 1522357 | 2013 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Adaptive neuro-fuzzy approach for wind turbine power coefficient estimation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Wind energy has become a large contender of traditional fossil fuel energy, particularly with the successful operation of multi-megawatt sized wind turbines. However, reasonable wind speed is not adequately sustainable everywhere to build an economical wind farm. In wind energy conversion systems, one of the operational problems is the changeability and fluctuation of wind. In most cases, wind speed can vacillate rapidly. Hence, quality of produced energy becomes an important problem in wind energy conversion plants. Several control techniques have been applied to improve the quality of power generated from wind turbines. In this study, the adaptive neuro-fuzzy inference system (ANFIS) is designed and adapted to estimate optimal power coefficient value of the wind turbines. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system (FIS). The back propagation learning algorithm is used for training this network. This intelligent controller is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable and Sustainable Energy Reviews - Volume 28, December 2013, Pages 191-195
Journal: Renewable and Sustainable Energy Reviews - Volume 28, December 2013, Pages 191-195
نویسندگان
Dalibor PetkoviÄ, Žarko ÄojbaÅ¡iÄ, Vlastimir NikoliÄ,