کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8121585 | 1522358 | 2013 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine
ترجمه فارسی عنوان
پیش بینی های گروه بندی انرژی باد و تجزیه و تحلیل عدم قطعیت با استفاده از ماشین بردار مرتبط با بهینه سازی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
قدرت باد، گروه بندی پیش بینی ها، تجزیه و تحلیل عدم قطعیت، ماشین برابری بهینه سازی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Relevance vector machine, a sparse probabilistic learning machine based on the kernel function, has excellent ability of prediction and generalization. It is proposed by this paper that the optimized relevance vector machine (ORVM) is a wind power interval forecasting model which is able to provide a certain prediction value and its possible fluctuation range at a given confidence level. The proposed model characterizes in insufficient sample training and uncertainty analysis and is greatly suitable to most of wind farms in China (newly built or large scale wind farms). First, a grouping mechanism has been used to divide wind turbines into several groups to establish forecasting model separately. Second, a selection method properly taking the characteristics of NWP error distribution into consideration was presented to improve forecasting accuracy of each group. Third, the parameters of the kernel function and initial value of iteration are determined by particle swarm optimization to further enhance forecasting accuracy. Two wind farms in China are involved in the process of primary data collection. The performance data obtained from ORVM models are tested against the predicted data generated by GA-ANN and SVM. Results show that the proposed model has better prediction accuracy, wider application scope and more efficient calculation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable and Sustainable Energy Reviews - Volume 27, November 2013, Pages 613-621
Journal: Renewable and Sustainable Energy Reviews - Volume 27, November 2013, Pages 613-621
نویسندگان
Jie Yan, Yongqian Liu, Shuang Han, Meng Qiu,