کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8146262 1524110 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Learning-based compressed sensing for infrared image super resolution
ترجمه فارسی عنوان
حساسیت فشرده مبتنی بر یادگیری برای رزولوشن فوق العاده تصویر مادون قرمز
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک اتمی و مولکولی و اپتیک
چکیده انگلیسی
This paper presents an infrared image super-resolution method based on compressed sensing (CS). First, the reconstruction model under the CS framework is established and a Toeplitz matrix is selected as the sensing matrix. Compared with traditional learning-based methods, the proposed method uses a set of sub-dictionaries instead of two coupled dictionaries to recover high resolution (HR) images. And Toeplitz sensing matrix allows the proposed method time-efficient. Second, all training samples are divided into several feature spaces by using the proposed adaptive k-means classification method, which is more accurate than the standard k-means method. On the basis of this approach, a complex nonlinear mapping from the HR space to low resolution (LR) space can be converted into several compact linear mappings. Finally, the relationships between HR and LR image patches can be obtained by multi-sub-dictionaries and HR infrared images are reconstructed by the input LR images and multi-sub-dictionaries. The experimental results show that the proposed method is quantitatively and qualitatively more effective than other state-of-the-art methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Infrared Physics & Technology - Volume 76, May 2016, Pages 139-147
نویسندگان
, , , ,