کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8153130 | 1524762 | 2018 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Alignment of collagen matrices using magnetic nanowires and magnetic barcode readout using first order reversal curves (FORC) (invited)
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک ماده چگال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Collagen matrices are one form of artificial tissue that has applications in biomimetic organs or tumors, and in fundamental biology. Anatomical organs and tissues are often composed of aligned collagen, and in this study cross-linking nickel magnetic nanowires (MNWs) to collagen allowed a one-step bi-directional alignment of the collagen matrices when processed in a uniform magnetic field. These matrices were analyzed by differential interference contrast (DIC) microscopy, scanning electron microscopy (SEM) and polarized transmittance. The bi-directional alignment was also confirmed by plated, stained arachnoid cells from the blood-brain-barrier (BBB). Arachnoid cells are morphologically sensitive to their extracellular matrix (ECM) environment, and in this study, they were observed to spider out in two distinct directions as predicted by microscopy and transmittance. In fact, MNW-collagen matrices plated with arachnoid-cells are promising for future studies of artificial BBBs. Other cells (here osteosarcoma) have been observed to internalize MNWs, which leads to the possibility of barcoding matrices and cells with distinct signatures, pending a magnetic readout technique. To this aim, mixtures of two different MNW populations were analyzed using first order reversal curves (FORC), and the relative concentrations of the two populations were correctly estimated with negligible error for ratios of 1: 23 and only 7% error for ratios of 1: 115. Together, these studies open a path for magnetic identification of artificial tissues where distinct magnetic labels on matrices and in cells combine for a unique fingerprint.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Magnetism and Magnetic Materials - Volume 459, 1 August 2018, Pages 176-181
Journal: Journal of Magnetism and Magnetic Materials - Volume 459, 1 August 2018, Pages 176-181
نویسندگان
Anirudh Sharma, Michael D. DiVito, Daniel E. Shore, Andrew D. Block, Katie Pollock, Peter Solheid, Joshua M. Feinberg, Jaime Modiano, Cornelius H. Lam, Allison Hubel, Bethanie J.H. Stadler,