کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8156102 | 1524840 | 2015 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Computing the demagnetizing tensor for finite difference micromagnetic simulations via numerical integration
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک ماده چگال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In the finite difference method which is commonly used in computational micromagnetics, the demagnetizing field is usually computed as a convolution of the magnetization vector field with the demagnetizing tensor that describes the magnetostatic field of a cuboidal cell with constant magnetization. An analytical expression for the demagnetizing tensor is available, however at distances far from the cuboidal cell, the numerical evaluation of the analytical expression can be very inaccurate. Due to this large-distance inaccuracy numerical packages such as OOMMF compute the demagnetizing tensor using the explicit formula at distances close to the originating cell, but at distances far from the originating cell a formula based on an asymptotic expansion has to be used. In this work, we describe a method to calculate the demagnetizing field by numerical evaluation of the multidimensional integral in the demagnetizing tensor terms using a sparse grid integration scheme. This method improves the accuracy of computation at intermediate distances from the origin. We compute and report the accuracy of (i) the numerical evaluation of the exact tensor expression which is best for short distances, (ii) the asymptotic expansion best suited for large distances, and (iii) the new method based on numerical integration, which is superior to methods (i) and (ii) for intermediate distances. For all three methods, we show the measurements of accuracy and execution time as a function of distance, for calculations using single precision (4-byte) and double precision (8-byte) floating point arithmetic. We make recommendations for the choice of scheme order and integrating coefficients for the numerical integration method (iii).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Magnetism and Magnetic Materials - Volume 381, 1 May 2015, Pages 440-445
Journal: Journal of Magnetism and Magnetic Materials - Volume 381, 1 May 2015, Pages 440-445
نویسندگان
Dmitri Chernyshenko, Hans Fangohr,