کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
817542 | 1469415 | 2015 | 9 صفحه PDF | دانلود رایگان |

The present study is focused to investigate influence of short fibers such as Alumina Microfibers (AMFs), Silk Microfibers (SMFs) and Ceria Nanofibers (CNFs) as reinforcements in Bis-GMA/TEGDMA resin towards development of composite dental filler. Morphologies of AMFs, SMFs, CNFs and their representative fracture surfaces of the reinforced dental resins/composites were examined by SEM. X-ray Diffraction Analysis was done to analyse the phase of the fibers used in this study and degree-of-conversion of the fiber incorporated base resin was studied by FTIR. Viscosity study of fiber resin mixture, depth of cure and mass change behaviour of the fibers resin composites in artificial saliva were done to analyse the flow ability and physical properties of the fiber resin composites. Mechanical properties of the composites were tested by a universal testing machine. This study demonstrated that incorporation of 10% AMFs, 5% SMFs, and 3.33% CNFs individually in Bis-GMA/TEGDMA dental resin resulted in similar degree of conversion compared to the control. Also the fiber reinforced composites (10% AMFs, 5% SMFs, and 3.33% CNFs) demonstrated significant improvement in mechanical properties compared to Bis-GMA/TEGDMA resin (Control). However, depth of cure was significantly reduced due to incorporation of fibers in the resin. The reinforcement effect of AMFs, SMFs in dental resin was superior due to their uniform distribution and good interfacial bonding between fibers and resin matrix. In case of CNFs, rapid increase in viscosity during mixing of fibers with resin and inhomogeneous mixing were the major problem encountered during formulation, which was mainly associated with high surface to volume ration of the nanofibers. The resultant composite containing CNFs had less improvement in mechanical properties which may be due to less fiber content, formation of agglomerates and improper distribution of the fibers in the composite which subsequently resulted in reduction of adhesive strength.
Journal: Composites Part B: Engineering - Volume 70, 1 March 2015, Pages 238–246