کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8184855 | 1527689 | 2018 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Separation of Maxwell equations in Kerr-NUT-(A)dS spacetimes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we explicitly demonstrate separability of the Maxwell equations in a wide class of higher-dimensional metrics which include the Kerr-NUT-(A)dS solution as a special case. Namely, we prove such separability for the most general metric admitting the principal tensor (a non-degenerate closed conformal Killing-Yano 2-form). To this purpose we use a special ansatz for the electromagnetic potential, which we represent as a product of a (rank 2) polarization tensor with the gradient of a potential function, generalizing the ansatz recently proposed by Lunin. We show that for a special choice of the polarization tensor written in terms of the principal tensor, both the Lorenz gauge condition and the Maxwell equations reduce to a composition of mutually commuting operators acting on the potential function. A solution to both these equations can be written in terms of an eigenfunction of these commuting operators. When incorporating a multiplicative separation ansatz, it turns out that the eigenvalue equations reduce to a set of separated ordinary differential equations with the eigenvalues playing a role of separability constants. The remaining ambiguity in the separated equations is related to an identification of Dâ2 polarizations of the electromagnetic field. We thus obtained a sufficiently rich set of solutions for the Maxwell equations in these spacetimes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 934, September 2018, Pages 7-38
Journal: Nuclear Physics B - Volume 934, September 2018, Pages 7-38
نویسندگان
Pavel KrtouÅ¡, Valeri P. Frolov, David KubizÅák,