کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8185099 1527697 2018 39 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantum groups, Yang-Baxter maps and quasi-determinants
ترجمه فارسی عنوان
گروه های کوانتومی، نقشه یانگ بکستر و شبه عوامل تعیین کننده
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی
For any quasi-triangular Hopf algebra, there exists the universal R-matrix, which satisfies the Yang-Baxter equation. It is known that the adjoint action of the universal R-matrix on the elements of the tensor square of the algebra constitutes a quantum Yang-Baxter map, which satisfies the set-theoretic Yang-Baxter equation. The map has a zero curvature representation among L-operators defined as images of the universal R-matrix. We find that the zero curvature representation can be solved by the Gauss decomposition of a product of L-operators. Thereby obtained a quasi-determinant expression of the quantum Yang-Baxter map associated with the quantum algebra Uq(gl(n)). Moreover, the map is identified with products of quasi-Plücker coordinates over a matrix composed of the L-operators. We also consider the quasi-classical limit, where the underlying quantum algebra reduces to a Poisson algebra. The quasi-determinant expression of the quantum Yang-Baxter map reduces to ratios of determinants, which give a new expression of a classical Yang-Baxter map.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Physics B - Volume 926, January 2018, Pages 200-238
نویسندگان
,