کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
818579 | 906533 | 2012 | 9 صفحه PDF | دانلود رایگان |

Carbon nanotubes (CNTs) have been regarded as ideal reinforcements of high-performance composites with enormous applications. In this paper, nano-structure is modeled as a linearly elastic composite medium, which consists of a homogeneous matrix having hexagonal representative volume elements (RVEs) and homogeneous cylindrical nanotubes with various inclination angles. Effects of inclined carbon nanotubes on mechanical properties are investigated for nano-composites using 3-D hexagonal representative volume element (RVE) with short and straight CNTs. The CNT is modeled as a continuum hollow cylindrical shape elastic material with different angles. The effect of the inclination of the CNT and its parameters is studied. Numerical equations are used to extract the effective material properties for the hexagonal RVE under axial as well as lateral loading conditions. The computational results indicated that elastic modulus of nano-composite is remarkably dependent on the orientation of the dispersed SWNTs. It is observed that the inclination significantly reduces the effective Young’s modulus of elasticity under an axial stretch. When compared with lateral loading case, effective reinforcement is found better in axial loading case. The effective moduli are very sensitive to the inclination and this sensitivity decreases with the increase of the waviness. In the case of short CNTs, increasing trend is observed up to a specific value of waviness index. It is also found from the simulation results that geometry of RVE does not have much significance on stiffness of nano-structures. The results obtained for straight CNTs are consistent with ERM results for hexagonal RVEs, which validate the proposed model results.
Journal: Composites Part B: Engineering - Volume 43, Issue 4, June 2012, Pages 2063–2071