کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
818605 | 906534 | 2012 | 9 صفحه PDF | دانلود رایگان |

Thermal postbuckling analysis is presented for nanocomposite cylindrical shells reinforced by single-walled carbon nanotubes (SWCNTs) subjected to a uniform temperature rise. The SWCNTs are assumed to be aligned and straight with a uniform layout. Two kinds of carbon nanotube-reinforced composite (CNTRC) shells, namely, uniformly distributed (UD) and functionally graded (FG) reinforcements, are considered. The material properties of FG-CNTRCs are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The governing equations are based on a higher order shear deformation theory with a von Kármán-type of kinematic nonlinearity. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. Based on the multi-scale approach, numerical illustrations are carried out for perfect and imperfect, FG- and UD-CNTRC shells under different values of the nanotube volume fractions. The results show that the buckling temperature as well as thermal postbuckling strength of the shell can be increased as a result of a functionally graded reinforcement. It is found that in most cases the CNTRC shell with intermediate nanotube volume fraction does not have intermediate buckling temperature and initial thermal postbuckling strength.
Journal: Composites Part B: Engineering - Volume 43, Issue 3, April 2012, Pages 1030–1038