کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
818830 906537 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Performance prediction of a specific wear rate in epoxy nanocomposites with various composition content of polytetrafluoroethylen (PTFE), graphite, short carbon fibers (CF) and nano-TiO2 using adaptive neuro-fuzzy inference system (ANFIS)
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Performance prediction of a specific wear rate in epoxy nanocomposites with various composition content of polytetrafluoroethylen (PTFE), graphite, short carbon fibers (CF) and nano-TiO2 using adaptive neuro-fuzzy inference system (ANFIS)
چکیده انگلیسی

Specific wear rate of composite materials plays a significant role in industry. The processes to measure it are both time and cost consuming. It is essential to suggest a modeling method to predict and analyze the effectiveness of parameters of specific wear rate. Nowadays, computational methods such as Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and adaptive neuro-fuzzy inference system (ANFIS) are mainly considered as applicable tools from modeling point of view. ANFIS present integrate performance of neural network (NN) and fuzzy system (FS). Present paper investigates performance prediction of a specific wear rate of epoxy composites with various composition using ANFIS. The obtained results showed that ANFIS is a powerful tool in modeling specific wear rate. The obtained mean of squared error (MSE) for testing sets in present paper obtained 0.0071.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Composites Part B: Engineering - Volume 43, Issue 2, March 2012, Pages 549–558
نویسندگان
, , ,