کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
819388 | 906555 | 2010 | 11 صفحه PDF | دانلود رایگان |

For the development of a composite main landing gear fitting in carbon fiber reinforced plastics the behavior and performance of Ultra Thick Laminate components is investigated. Material thicknesses exceeds 60 mm. For the purpose of validation a test program is arranged using T-cross sections subjected to multiple load cases. The components are manufactured entirely with non crimped fabrics (NCF) using an adapted open mould manufacturing process. In addition to these T-Sections large full scale subcomponents of the entire fitting are manufactured and tested. As main topic of this paper standard FE methods are investigated and validated for thick structures using the generated test results. Due to the presence of transverse shear and normal stresses a 3D modeling approach is chosen. Transverse shear and normal stresses are indentified as main failure cause and failure is mainly initiated in the curved regions. Solid composite brick elements offer an efficient way to model thick structures. These are incapable of calculating accurate shear stresses on a ply level; usable results are however achieved by discretisation of the component with multiple elements over thickness. In addition stress gradients in the failure region are small; stress variations on a ply level are minimal. Out of plane material properties are not available and initial assumptions are made. Material correction factors (degradation) are introduced and discussed.
Journal: Composites Part B: Engineering - Volume 41, Issue 4, June 2010, Pages 326–336