کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8202020 | 1529851 | 2015 | 42 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Wave-packet continuum discretization for quantum scattering
ترجمه فارسی عنوان
اختلاط پیوندی موج برای پراکندگی کوانتومی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
نظریه پراکندگی کوانتومی، سازگاری مداوم معادلات فدده ی، پراکندگی چند کاناله،
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک و نجوم (عمومی)
چکیده انگلیسی
A general approach to a solution of few- and many-body scattering problems based on a continuum-discretization procedure is described in detail. The complete discretization of continuous spectrum is realized using stationary wave packets which are the normalized states constructed from exact non-normalized continuum states. Projecting the wave functions and all scattering operators like t-matrix, resolvent, etc. on such a wave-packet basis results in a formulation of quantum scattering problem entirely in terms of discrete elements and linear equations with regular matrices. It is demonstrated that there is a close relation between the above stationary wave packets and pseudostates which are employed often to approximate the scattering states with a finite L2 basis. Such a fully discrete treatment of complicated few- and many-body scattering problems leads to significant simplification of their practical solution. Also we get finite-dimensional approximations for complicated operators like effective interactions between composite particles constructed via the Feshbach-type projection formalism. As illustrations to this general approach we consider several important particular problems including multichannel scattering and scattering in the three-nucleon system within the Faddeev framework.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Physics - Volume 360, September 2015, Pages 613-654
Journal: Annals of Physics - Volume 360, September 2015, Pages 613-654
نویسندگان
O.A. Rubtsova, V.I. Kukulin, V.N. Pomerantsev,