کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8203067 1530506 2018 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Structural and magnetic properties of MoS2 monolayer zigzag nanoribbon doped by Ti, V, Cr, and Mn
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک و نجوم (عمومی)
پیش نمایش صفحه اول مقاله
Structural and magnetic properties of MoS2 monolayer zigzag nanoribbon doped by Ti, V, Cr, and Mn
چکیده انگلیسی
In order to find new functions of monolayer MoS2 in nanoelectronics or spin electronic devices, using spin-polarized density functional theory (DFT) calculations with on-site coulomb interaction (U), we investigated substitutional doping of Mo atoms of monolayer zigzag MoS2 nanoribbon (ZZ-MoS2 NR) by transition metals (TM) (where TM = Ti, V, Cr, Mn) at the Mo-edge, S-edge, and the middle of the NRs. The results of this study indicate the NR widened irrespective of the doped TM position and type, and the Mo-edge was found as the easiest substitutional position. For ZZ-MoS2 NR doped by Mn, Cr or V atoms, the preferred magnetic coupling state is the edge atoms of S at the S-edge, exhibiting the same spin polarization with TM (named the FM1 state), attributing the NR with metallic magnetism. For Ti-doped monolayer ZZ-MoS2 NR, in addition to the FM1 state, other preferred magnetic coupling state was observed in which the edge atoms of S at the S-edge exhibit the opposite spin polarization with that of Ti (named the FM2 state). Thus, the NR doped by Ti atom possesses metallic (FM1 state) or half-metallic (FM2 state) magnetism. The total magnetic moments of the ZZ-MoS2 NR doped by TM follows a linear relationship as a function of the TM dopants (Mn, Cr, V, and Ti). Under >4% applied strain, the NR doped by Ti atom only presents the characteristics of half-metallic magnetism as the initial one in the FM2 state, and its total magnetic moment always remained 0 μB, i.e., it was not affected by the width of the NR. This study provides a rational route of tuning the magnetic properties of ZZ-MoS2 NRs for their promising applications in nanoelectronics and spin electronic devices.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physics Letters A - Volume 382, Issue 34, 31 August 2018, Pages 2354-2360
نویسندگان
, , ,