کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
823503 | 1469648 | 2015 | 12 صفحه PDF | دانلود رایگان |

Porous materials are commonly used in various industrial systems such as ducts, HVAC, hoods, mufflers, in order to introduce acoustic absorption and to reduce the radiated acoustics levels. For problems involving flow-induced noise mechanisms and explicit interactions between turbulent source regions, numerical approaches remain a challenging task involving, on the one hand, the coupling between unsteady flow calculations and acoustics simulations and, on the other hand, the development of advanced and sensitive numerical schemes. In this paper, acoustic materials are explicitly modeled in lattice Boltzmann simulations using equivalent fluid regions having arbitrary porosity and resistivity. Numerical simulations are compared to analytical derivations as well as experiments and semi-empirical models to validate the approach.
Journal: Comptes Rendus Mécanique - Volume 343, Issues 10–11, October–November 2015, Pages 533–544