کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
824586 907182 2006 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A method for the calculation of nonsymmetric steady periodic capillary–gravity waves on water of arbitrary uniform depth
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
A method for the calculation of nonsymmetric steady periodic capillary–gravity waves on water of arbitrary uniform depth
چکیده انگلیسی

In this Note the method developed by Aider and Debiane (2004) for the calculation of nonsymmetric water waves on infinite depth is extended to finite depth. The water-wave problem is reduced to a system of nonlinear algebraic equations which is solved by using Newton's method. Solutions are computed up to their limiting forms by decrementing the depth from the infinity to a value of the depth-wavelength ratio h/λ less than 0.025. It is found that the waves become symmetric when the depth becomes very small. Relations giving some integral properties are derived. To cite this article: R. Aider, M. Debiane, C. R. Mecanique 334 (2006).

RésuméLa méthode développée par Aider et Debiane (2004) pour le calcul des ondes de gravité-capillarité non-symétriques en profondeur infinie est étendue au cas d'une profondeur arbitraire. Les équations classiques des vagues sont réduites à un système d'équations algébriques non-linéaires, résolu par la méthode de Newton. Des solutions ont été calculées jusqu'à leur forme limite en décrémentant le paramètre lié à la profondeur de la valeur infinie jusqu'à une valeur telle que le rapport h/λ, de la profondeur sur la longueur d'onde, devient inférieur à 0,025. On a trouvé que les ondes deviennent symétriques lorsque la profondeur devient très faible. Les relations donnant quelques propriétés intégrales ont été dérivées. Pour citer cet article : R. Aider, M. Debiane, C. R. Mecanique 334 (2006).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Comptes Rendus Mécanique - Volume 334, Issue 6, June 2006, Pages 387-392