کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8255422 | 1533707 | 2018 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Modular Hecke algebras over Möbius categories
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We extend the modular Hecke operators of Connes and Moscovici by taking values in the modular incidence algebra M[C] over a Möbius category C. Here M is the 'modular tower' consisting of all modular forms of all weights across all levels. We construct multiple product structures on the collection A(Î)[C] of modular Hecke operators of level Î over C, where Î is a principal congruence subgroup. These product structures are then shown to be well behaved with respect to Hopf actions on A(Î)[C]. While A(Î)[C] already carries an action of the Hopf algebra H1 of codimension 1-foliations, the noncommutativity of the modular incidence algebra M[C] allows us to construct additional operators on A(Î)[C]. The use of Möbius categories provides a single framework for describing modular Hecke operators taking values in various rings: from formal power series rings over M to arithmetic functions over M
and algebras of upper triangular matrices with entries in M. Moreover, we use functors between Möbius categories to study relations between various modular Hecke algebras.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 131, September 2018, Pages 23-40
Journal: Journal of Geometry and Physics - Volume 131, September 2018, Pages 23-40
نویسندگان
Abhishek Banerjee,