کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8255589 1533710 2018 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Left-invariant Einstein metrics on S3×S3
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Left-invariant Einstein metrics on S3×S3
چکیده انگلیسی
The classification of homogeneous compact Einstein manifolds in dimension six is an open problem. We consider the remaining open case, namely left-invariant Einstein metrics g on G=SU(2)×SU(2)=S3×S3. Einstein metrics are critical points of the total scalar curvature functional for fixed volume. The scalar curvature S of a left-invariant metric g is constant and can be expressed as a rational function in the parameters determining the metric. The critical points of S, subject to the volume constraint, are given by the zero locus of a system of polynomials in the parameters. In general, however, the determination of the zero locus is apparently out of reach. Instead, we consider the case where the isotropy group K of g in the group of motions is non-trivial. When K≇Z2 we prove that the Einstein metrics on G are given by (up to homothety) either the standard metric or the nearly Kähler metric, based on representation-theoretic arguments and computer algebra. For the remaining case K≅Z2 we present partial results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Geometry and Physics - Volume 128, June 2018, Pages 128-139
نویسندگان
, , , ,