کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8256249 | 1533951 | 2018 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Single bumps in a 2-population homogenized neuronal network model
ترجمه فارسی عنوان
رکوردهای تک در مدل شبکهای عصبی هولوگرافی 2 جمعیت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
مدل های میدان عصبی، نظریه همگرا شدن، وجود و پایداری ضربه،
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
چکیده انگلیسی
We investigate existence and stability of single bumps in a homogenized 2-population neural field model, when the firing rate functions are given by the Heaviside function. The model is derived by means of the two-scale convergence technique of Nguetseng in the case of periodic microvariation in the connectivity functions. The connectivity functions are periodically modulated in both the synaptic footprint and in the spatial scale. The bump solutions are constructed by using a pinning function technique for the case where the solutions are independent of the local variable. In the weakly modulated case the generic picture consists of two bumps (one narrow and one broad bump) for each admissible set of threshold values for firing. In addition, a new threshold value regime for existence of bumps is detected. Beyond the weakly modulated regime the number of bumps depends sensitively on the degree of heterogeneity. For the latter case we present a configuration consisting of three coexisting bumps. The linear stability of the bumps is studied by means of the spectral properties of a Fredholm integral operator, block diagonalization of this operator and the Fourier decomposition method. In the weakly modulated regime, one of the bumps is unstable for all relative inhibition times, while the other one is stable for small and moderate values of this parameter. The latter bump becomes unstable as the relative inhibition time exceeds a certain threshold. In the case of the three coexisting bumps detected in the regime of finite degree of heterogeneity, we have at least one stable bump (and maximum two stable bumps) for small and moderate values of the relative inhibition time.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 370, 1 May 2018, Pages 40-53
Journal: Physica D: Nonlinear Phenomena - Volume 370, 1 May 2018, Pages 40-53
نویسندگان
Karina Kolodina, Anna Oleynik, John Wyller,