| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8256356 | 1534004 | 2015 | 6 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Derivation of a wave kinetic equation from the resonant-averaged stochastic NLS equation
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													ریاضیات کاربردی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												We suggest a new derivation of a wave kinetic equation for the spectrum of the weakly nonlinear Schrödinger equation with stochastic forcing. The kinetic equation is obtained as a result of a double limiting procedure. Firstly, we consider the equation on a finite box with periodic boundary conditions and send the size of the nonlinearity and of the forcing to zero, while the time is correspondingly rescaled; then, the size of the box is sent to infinity (with a suitable rescaling of the solution). We report here the results of the first limiting procedure, analysed with full rigour in  [8], and show how the second limit leads to a kinetic equation for the spectrum, if some further hypotheses (commonly employed in the weak turbulence theory) are accepted. Finally we show how to derive from these equations the Kolmogorov-Zakharov spectra.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 309, 1 August 2015, Pages 65-70
											Journal: Physica D: Nonlinear Phenomena - Volume 309, 1 August 2015, Pages 65-70
نویسندگان
												Sergei Kuksin, Alberto Maiocchi,