کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8256451 | 1534030 | 2014 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bifurcation from rolls to multi-pulse planforms via reduction to a parabolic Boussinesq model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A mechanism is presented for the bifurcation from one-dimensional spatially periodic patterns (rolls) into two-dimensional planar states (planforms). The novelty is twofold: the planforms are solutions of a Boussinesq partial differential equation (PDE) on a periodic background and secondly explicit formulas for the coefficients in the Boussinesq equation are derived, based on a form of planar conservation of wave action flux. The Boussinesq equation is integrable with a vast array of solutions, and an example of a new planform bifurcating from rolls, which appears to be generic, is presented. Adding in time leads to a new time-dependent PDE, which models the nonlinear behaviour emerging from a generalization of Eckhaus instability. The class of PDEs to which the theory applies is evolution equations whose steady part is a gradient elliptic PDE. Examples are the 2+1 Ginzburg-Landau equation with real coefficients, and the 2+1 planar Swift-Hohenberg equation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 275, 1 May 2014, Pages 8-18
Journal: Physica D: Nonlinear Phenomena - Volume 275, 1 May 2014, Pages 8-18
نویسندگان
Thomas J. Bridges,