| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8256451 | 1534030 | 2014 | 11 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Bifurcation from rolls to multi-pulse planforms via reduction to a parabolic Boussinesq model
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													ریاضیات کاربردی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												A mechanism is presented for the bifurcation from one-dimensional spatially periodic patterns (rolls) into two-dimensional planar states (planforms). The novelty is twofold: the planforms are solutions of a Boussinesq partial differential equation (PDE) on a periodic background and secondly explicit formulas for the coefficients in the Boussinesq equation are derived, based on a form of planar conservation of wave action flux. The Boussinesq equation is integrable with a vast array of solutions, and an example of a new planform bifurcating from rolls, which appears to be generic, is presented. Adding in time leads to a new time-dependent PDE, which models the nonlinear behaviour emerging from a generalization of Eckhaus instability. The class of PDEs to which the theory applies is evolution equations whose steady part is a gradient elliptic PDE. Examples are the 2+1 Ginzburg-Landau equation with real coefficients, and the 2+1 planar Swift-Hohenberg equation.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 275, 1 May 2014, Pages 8-18
											Journal: Physica D: Nonlinear Phenomena - Volume 275, 1 May 2014, Pages 8-18
نویسندگان
												Thomas J. Bridges,