کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8256451 1534030 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bifurcation from rolls to multi-pulse planforms via reduction to a parabolic Boussinesq model
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Bifurcation from rolls to multi-pulse planforms via reduction to a parabolic Boussinesq model
چکیده انگلیسی
A mechanism is presented for the bifurcation from one-dimensional spatially periodic patterns (rolls) into two-dimensional planar states (planforms). The novelty is twofold: the planforms are solutions of a Boussinesq partial differential equation (PDE) on a periodic background and secondly explicit formulas for the coefficients in the Boussinesq equation are derived, based on a form of planar conservation of wave action flux. The Boussinesq equation is integrable with a vast array of solutions, and an example of a new planform bifurcating from rolls, which appears to be generic, is presented. Adding in time leads to a new time-dependent PDE, which models the nonlinear behaviour emerging from a generalization of Eckhaus instability. The class of PDEs to which the theory applies is evolution equations whose steady part is a gradient elliptic PDE. Examples are the 2+1 Ginzburg-Landau equation with real coefficients, and the 2+1 planar Swift-Hohenberg equation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica D: Nonlinear Phenomena - Volume 275, 1 May 2014, Pages 8-18
نویسندگان
,