کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
833381 908142 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimization of heat treatment technique of high-vanadium high-speed steel based on back-propagation neural networks
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Optimization of heat treatment technique of high-vanadium high-speed steel based on back-propagation neural networks
چکیده انگلیسی

This paper is dedicated to the application of artificial neural networks in optimizing heat treatment technique of high-vanadium high-speed steel (HVHSS), including predictions of retained austenite content (A), hardness (H) and wear resistance (ε) according to quenching and tempering temperatures (T1, T2). Multilayer back-propagation (BP) networks are created and trained using comprehensive datasets tested by the authors. And very good performances of the neural networks are achieved. The prediction results show residual austenite content decreases with decreasing quenching temperature or increasing tempering temperature. The maximum value of relative wear resistance occurs at quenching of 1000–1050 °C and tempering of 530–560 °C, corresponding to the peak value of hardness and retained austenite content of about 20–40 vol%. The prediction values have sufficiently mined the basic domain knowledge of heat treatment process of HVHSS. A convenient and powerful method of optimizing heat treatment technique has been provided by the authors.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials & Design - Volume 28, Issue 5, 2007, Pages 1425–1432
نویسندگان
, , , , ,