کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
839224 1470461 2016 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterization of function spaces of vector fields and an application in nonlinear peridynamics
ترجمه فارسی عنوان
خصوصیات فضاهای تابع زمینه های بردار و کاربرد در پرییدنامیک غیر خطی
کلمات کلیدی
مشخصه غیر محلی، پریدینامیک، ΓΓ-همگرایی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
چکیده انگلیسی

The paper introduces a class of nonlocal derivative operators defined over vector fields that turn out to satisfy a nonlocal integration by parts formula. We demonstrate that in several function spaces, these operators have similar continuity property as the classical differential operators. A closed formula for the limit of these operators will be obtained when nonlocality vanishes. The limit analysis together with the integration by parts formula enables us to link the nonlocal derivative operators and associated function spaces with the conventional local differential operators and Sobolev, bounded variations, and bounded deformation function spaces. As an application, we present an existence result and asymptotic analysis in the sense of ΓΓ-convergence of some nonlinear variational problems that arise in nonlocal continuum mechanics.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 140, July 2016, Pages 82–111
نویسندگان
, ,