کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
839228 1470461 2016 42 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimal results for the fractional heat equation involving the Hardy potential
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Optimal results for the fractional heat equation involving the Hardy potential
چکیده انگلیسی

In this paper we study the influence of the Hardy potential in the fractional heat equation. In particular, we consider the problem (Pθ){ut+(−Δ)su=λu|x|2s+θup+cfin  Ω×(0,T),u(x,t)>0in  Ω×(0,T),u(x,t)=0in  (RN∖Ω)×[0,T),u(x,0)=u0(x)if  x∈Ω, where N>2sN>2s, 01p>1, c,λ>0c,λ>0, θ={0,1}θ={0,1}, and u0,f⩾0 are in a suitable class of functions.The main results in the article are:(1) Optimal results about existence and instantaneous and complete blow up   in the linear problem (P0)(P0), where the best constant in the fractional Hardy inequality, ΛN,sΛN,s, provides the threshold between existence and nonexistence. To obtain local sharp estimates of the solutions it is required to prove a weak Harnack inequality for a weighted operator that appears in a natural way.(2) The existence of a critical power p+(s,λ)p+(s,λ) in the semilinear problem (P1)(P1) be such that:(a) If p>p+(s,λ)p>p+(s,λ), the problem has no weak positive supersolutions and a phenomenon of complete and instantaneous blow up happens.(b) If p

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 140, July 2016, Pages 166–207
نویسندگان
, , , ,