کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
839248 1470471 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Antimaximum principle in exterior domains
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Antimaximum principle in exterior domains
چکیده انگلیسی

We consider the antimaximum principle for the pp-Laplacian in the exterior domain: {−Δpu=λK(x)∣u∣p−2u+h(x)in  B1c,u=0on  ∂B1, where ΔpΔp is the pp-Laplace operator with p>1p>1,λλ is the spectral parameter and B1c is the exterior of the closed unit ball in RNRN with N≥1N≥1. The function hh is assumed to be nonnegative and nonzero, however the weight function KK is allowed to change its sign. For KK in a certain weighted Lebesgue space, we prove that the antimaximum principle holds locally. A global antimaximum principle is obtained for hh with compact support. For a compactly supported KK, with N=1N=1 and p=2p=2, we provide a necessary and sufficient condition on hh for the global antimaximum principle. In the course of proving our results we also establish the boundary regularity of solutions of certain boundary value problems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 130, January 2016, Pages 241–254
نویسندگان
, , , ,