کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
839303 1470464 2016 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An extension problem for sums of fractional Laplacians and 1-D symmetry of phase transitions
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
An extension problem for sums of fractional Laplacians and 1-D symmetry of phase transitions
چکیده انگلیسی

We study nonlinear elliptic equations for operators corresponding to non-stable Lévy diffusions. We include a sum of fractional Laplacians of different orders. Such operators are infinitesimal generators of non-stable (i.e., non self-similar) Lévy processes. We establish the regularity of solutions, as well as sharp energy estimates. As a consequence, we prove a 1-D symmetry result for monotone solutions to Allen–Cahn type equations with a non-stable Lévy diffusion. These operators may still be realized as local operators using a system of PDEs — in the spirit of the extension problem of Caffarelli and Silvestre.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 137, May 2016, Pages 246–265
نویسندگان
, ,