کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
839327 1470468 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Complete hypersurfaces with two distinct principal curvatures in a locally symmetric Riemannian manifold
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Complete hypersurfaces with two distinct principal curvatures in a locally symmetric Riemannian manifold
چکیده انگلیسی

We deal with complete hypersurfaces with two distinct principal curvatures in a locally symmetric Riemannian manifold, which is supposed to obey some appropriated curvature constraints. Initially, considering the case that such a hypersurface has constant mean curvature, we apply a Simons type formula jointly with the well known generalized maximum principle of Omori–Yau to show that it must be isometric to an isoparametric hypersurface of the ambient space. Afterwards, we use a Cheng–Yau modified operator in order to obtain a sort of extension of this previously mentioned result for the context of linear Weingarten hypersurfaces, that is, hypersurfaces whose mean and scalar curvatures are linearly related.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 133, March 2016, Pages 15–27
نویسندگان
, , , ,