کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
839549 1470476 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
L2L2 harmonic forms on submanifolds in a Hadamard manifold
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
L2L2 harmonic forms on submanifolds in a Hadamard manifold
چکیده انگلیسی

In the present paper, we first show that an n−1n-super-stable complete minimal submanifold in Rn+mRn+m admits no nontrivial L2L2 harmonic 11-forms, and has only one end, which generalized Cao–Shen–Zhu’s result on stable minimal hypersurface in Rn+1Rn+1. For L2L2 harmonic forms of higher order, we prove a vanishing and finiteness theorem under the assumptions on Schrödinger operators involving the squared norm of the traceless second fundamental form. Finally, if the potential function of the Schrödinger operator is a multiple of the squared norm of the second fundamental form, we can further show that the hypersurface has only one end or finitely many ends.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 125, September 2015, Pages 310–322
نویسندگان
,