کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
839812 1470491 2014 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Harnack inequality for a subelliptic PDE in nondivergence form
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Harnack inequality for a subelliptic PDE in nondivergence form
چکیده انگلیسی

We consider subelliptic equations in non divergence form of the type Lu=∑i≤jaijXjXiu=0 where XjXj are the Grushin vector fields, and the matrix coefficient is uniformly elliptic. We obtain a scale invariant Harnack’s inequality on the XjXj’s CC balls for nonnegative solutions under the only assumption that the ratio between the maximum and minimum eigenvalues of the coefficient matrix is bounded. In the paper we first prove a weighted Aleksandrov–Bakelman–Pucci estimate, and then we show a critical density estimate, the double ball property and the power decay property. Once this is established, Harnack’s inequality follows directly from the axiomatic theory developed by Di Fazio, Gutierrez and Lanconelli in Di Fazio et al. (2008).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 109, November 2014, Pages 285–300
نویسندگان
,