کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
840155 | 1470514 | 2013 | 22 صفحه PDF | دانلود رایگان |

The paper is devoted to developing second-order tools of variational analysis and their applications to characterizing tilt-stable local minimizers of constrained optimization problems infinite-dimensional spaces with many results new also in finite-dimensional settings. The importance of tilt stability has been well recognized from both theoretical and numerical aspects of optimization. Based on second-order generalized differentiation, we obtain qualitative and quantitative characterizations of tilt stability in general frameworks of constrained optimization and establish its relationships with strong metric regularity of subgradient mappings and uniform second-order growth. The results obtained are applied to deriving new necessary and sufficient conditions for tilt-stable minimizers in problems of nonlinear programming with twice continuously differentiable data in Hilbert spaces.
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 86, July 2013, Pages 159–180