کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
840178 | 1470515 | 2013 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The averaging principle and periodic solutions for nonlinear evolution equations at resonance
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study the existence of TT-periodic solutions (T>0)(T>0) for the first order differential equations being at resonance at infinity, where the right hand side is the perturbations of a sectorial operator. Our aim is to prove an index formula expressing the topological degree of the associated translation along trajectories operator on appropriately large ball, in terms of special geometrical assumptions imposed on the nonlinearity. We also prove that the geometrical assumptions are generalizations of well known Landesman–Lazer and strong resonance conditions. The obtained index formula is used to derive the criteria determining the existence of TT-periodic solutions for the heat equation being at resonance at infinity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 85, July 2013, Pages 253–278
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 85, July 2013, Pages 253–278
نویسندگان
Piotr Kokocki,