کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
840190 1470519 2013 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Shape and period of limit cycles bifurcating from a class of Hamiltonian period annulus
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Shape and period of limit cycles bifurcating from a class of Hamiltonian period annulus
چکیده انگلیسی

In this work we are concerned with the problem of shape and period of isolated periodic solutions of perturbed analytic radial Hamiltonian vector fields in the plane. Françoise developed a method to obtain the first non vanishing Poincaré–Pontryagin–Melnikov function. We generalize this technique and we apply it to know, up to any order, the shape of the limit cycles bifurcating from the period annulus of the class of radial Hamiltonians. We write any solution, in polar coordinates, as a power series expansion in terms of the small parameter. This expansion is also used to give the period of the bifurcated periodic solutions. We present the concrete expression of the solutions up to third order of perturbation of Hamiltonians of the form H=H(r)H=H(r). Necessary and sufficient conditions that show if a solution is simple or double are also presented.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 81, April 2013, Pages 130–148
نویسندگان
, ,