کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
840308 | 908475 | 2012 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Study of a 3D-Ginzburg-Landau functional with a discontinuous pinning term
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In a convex domain ΩâR3, we consider the minimization of a 3D-Ginzburg-Landau type energy Eε(u)=12â«Î©|âu|2+12ε2(a2â|u|2)2 with a discontinuous pinning term a among H1(Ω,C)-maps subject to a Dirichlet boundary condition gâH1/2(âΩ,S1). The pinning term a:R3âR+â takes a constant value bâ(0,1) in Ï, an inner strictly convex subdomain of Ω, and 1 outside Ï. We prove energy estimates with various error terms depending on assumptions on Ω,Ï and g. In some special cases, we identify the vorticity defects via the concentration of the energy. Under hypotheses on the singularities of g (the singularities are polarized and quantified by their degrees which are ±1), vorticity defects are geodesics (computed w.r.t. a geodesic metric da2 depending only on a) joining two paired singularities of gpi&nÏ(i) where Ï is a minimal connection (computed w.r.t. a metric da2) of the singularities of g and p1,â¦,pk are the positive (resp. n1,â¦,nk are the negative) singularities.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 75, Issue 17, November 2012, Pages 6275-6296
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 75, Issue 17, November 2012, Pages 6275-6296
نویسندگان
Mickaël Dos Santos,