کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
840339 | 908477 | 2012 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Existence, non-existence and asymptotic behavior of global solutions to the Cauchy problem for systems of semilinear hyperbolic equations with damping terms
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider the Cauchy problem for systems of semilinear hyperbolic equations. Using the Lp→LqLp→Lq type estimation for the corresponding linear parts, the existence and uniqueness of weak global solutions are investigated. We also established the behavior of solutions and their derivatives as t→+∞t→+∞. Using the method of test functions developed in the works (Mitidieri and Pokhozhaev, 2001 [11], Veron and Pohozaev, 2001 [12] and Caristi, 2000 [23]) we obtain the analogue of the Fujita–Hayakawa type criterion for the absence of global solutions to some system of semilinear hyperbolic inequalities with damping. It follows that the conditions of existence theorem imposed on the growth of nonlinear parts are exact in some sense.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 75, Issue 1, January 2012, Pages 91–102
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 75, Issue 1, January 2012, Pages 91–102
نویسندگان
Akbar B. Aliev, Anar A. Kazimov,