کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
840475 908481 2012 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global existence vs. blowup in a fully parabolic quasilinear 1D Keller–Segel system
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Global existence vs. blowup in a fully parabolic quasilinear 1D Keller–Segel system
چکیده انگلیسی

We show that the one-dimensional fully parabolic Keller–Segel system with nonlinear diffusion possesses global-in-time solutions, provided the nonlinear diffusion is equal to 1(1+u)α,α<1, independently on the volume of the initial data. We also show that in the critical case, i.e. for α=1α=1, the same result holds for initial masses smaller than a prescribed constant. Additionally, we prove the existence of initial data for which a solution blows up in a finite time for any nonlinear diffusion integrable at infinity. However, in the parabolic–elliptic case the above mentioned integrability condition on nonlinear diffusion sharply distinguishes between global existence and blowup cases. We are unable to recover the entire global existence counterpart of this result in a fully parabolic case.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 75, Issue 13, September 2012, Pages 5215–5228
نویسندگان
, , ,