کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
840550 908483 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rearrangements and minimization of the principal eigenvalue of a nonlinear Steklov problem
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Rearrangements and minimization of the principal eigenvalue of a nonlinear Steklov problem
چکیده انگلیسی

This paper, motivated by Del Pezzo et al. (2006) [1], discusses the minimization of the principal eigenvalue of a nonlinear boundary value problem. In the literature, this type of problem is called Steklov eigenvalue problem. The minimization is implemented with respect to a weight function. The admissible set is a class of rearrangements generated by a bounded function. We merely assume the generator is non-negative in contrast to [1], where the authors consider weights which are positively away from zero, in addition to being two-valued. Under this generality, more physical situations can be modeled. Finally, using rearrangement theory developed by Geoffrey Burton, we are able to prove uniqueness of the optimal solution when the domain of interest is a ball.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 74, Issue 16, November 2011, Pages 5697–5704
نویسندگان
, ,