کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
840712 908490 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The directed and Rubinov subdifferentials of quasidifferentiable functions, Part I: Definition and examples
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
The directed and Rubinov subdifferentials of quasidifferentiable functions, Part I: Definition and examples
چکیده انگلیسی

We extend the definition of the directed subdifferential, originally introduced in [R. Baier, E. Farkhi, The directed subdifferential of DC functions, in: A. Leizarowitz, B.S. Mordukhovich, I. Shafrir, A.J. Zaslavski (Eds.), Nonlinear Analysis and Optimization II: Optimization. A Conference in Celebration of Alex Ioffe’s 70th and Simeon Reich’s 60th Birthdays, June 18–24, 2008, Haifa, Israel, in: AMS Contemp. Math., vol. 513, AMS, Bar-Ilan University, 2010, pp. 27–43], for differences of convex functions (DC) to the wider class of quasidifferentiable functions. Such generalization efficiently captures differential properties of a wide class of functions including amenable and lower/upper-Ck functions. While preserving the most important properties of the quasidifferential, such as exact calculus rules, the directed subdifferential lacks the major drawbacks of quasidifferential: non-uniqueness and “inflation in size” of the two convex sets representing the quasidifferential after applying calculus rules. The Rubinov subdifferential is defined as the visualization of the directed subdifferential.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 75, Issue 3, February 2012, Pages 1074–1088
نویسندگان
, , ,