کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
840721 | 908490 | 2012 | 17 صفحه PDF | دانلود رایگان |

This paper is mainly concerned with the classical KKT reformulation and the primal KKT reformulation (also known as an optimization problem with generalized equation constraint (OPEC)) of the optimistic bilevel optimization problem. A generalization of the MFCQ to an optimization problem with operator constraint is applied to each of these reformulations, hence leading to new constraint qualifications (CQs) for the bilevel optimization problem. MM- and SS-type stationarity conditions tailored for the problem are derived as well. Considering the close link between the aforementioned reformulations, similarities and relationships between the corresponding CQs and optimality conditions are highlighted. In this paper, a concept of partial calmness known for the optimal value reformulation is also introduced for the primal KKT reformulation and used to recover the MM-stationarity conditions.
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 75, Issue 3, February 2012, Pages 1202–1218