کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
840793 908492 2012 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Some mapping theorems for continuous functions defined on the sphere
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Some mapping theorems for continuous functions defined on the sphere
چکیده انگلیسی
According to the Knaster conjecture, for any continuous function f:Sm+n−2→Rm and n distinct points u1,u2,…,un∈Sm+n−2, there exists a rotation r∈SO(m+n−1) such that f(ru1)=f(ru2)=⋯=f(run). In this paper, we focus on the study of the properties of a continuous mapping from a sphere to a Euclidean space by using the theory of Smith periodic transformation and the Smith special index of the Stiefel manifold under periodic transformation. We obtain some mapping theorems for the case where n=αβ,β is an odd prime number and ui⋅uj=ui+α⋅uj+α(1≤i,j≤n,un+1=u1). Furthermore, if n=p, where p is an odd prime number, this conjecture is proved for the case where ui⋅uj=ui+1⋅uj+1(1≤i,j≤p,up+1=u1) and the dimension of the sphere is not less than m+n−2.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 75, Issue 4, March 2012, Pages 1881-1886
نویسندگان
,