کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
840811 908492 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Isometries, Mazur–Ulam theorem and Aleksandrov problem for non-Archimedean normed spaces
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Isometries, Mazur–Ulam theorem and Aleksandrov problem for non-Archimedean normed spaces
چکیده انگلیسی

We study isometries between normed spaces over a non-Archimedean valued field KK. We show the failure of a Mazur–Ulam theorem in the framework of non-Archimedean spaces. Considering Aleksandrov problem, we prove that a surjective Lipschitz map E→EE→E with the strong distance one preserving property, where EE is a finite-dimensional normed space, is an isometry if and only if KK is locally compact. We prove also that every isometry E→EE→E for finite-dimensional EE is surjective if and only if KK is spherically complete and card(k) is finite.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 75, Issue 4, March 2012, Pages 2060–2068
نویسندگان
,