کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
840824 908492 2012 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On approximate solutions of the incompressible Euler and Navier–Stokes equations
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
On approximate solutions of the incompressible Euler and Navier–Stokes equations
چکیده انگلیسی

We consider the incompressible Euler or Navier–Stokes (NS) equations on a torus Td, in the functional setting of the Sobolev spaces HΣ0n(Td) of divergence free, zero mean vector fields on Td, for n∈(d/2+1,+∞)n∈(d/2+1,+∞). We present a general theory of approximate solutions for the Euler/NS Cauchy problem; this allows to infer a lower bound Tc on the time of existence of the exact solution uu analyzing a posteriori   any approximate solution ua, and also to construct a function ℛnℛn such that ‖u(t)−ua(t)‖n⩽ℛn(t) for all t∈[0,Tc). Both Tc and ℛnℛn are determined solving suitable “control inequalities”, depending on the error of ua; the fully quantitative implementation of this scheme depends on some previous estimates of ours on the Euler/NS quadratic nonlinearity (Morosi and Pizzocchero (2010, in press)  [7] and [8]). To keep in touch with the existing literature on the subject, our results are compared with a setting for approximate Euler/NS solutions proposed in Chernyshenko et al. (2007) [1]. As a first application of the present framework, we consider the Galerkin approximate solutions of the Euler/NS Cauchy problem, with a specific initial datum considered in Behr et al. (2001) [9]: in this case our methods allow, amongst else, to prove global existence for the NS Cauchy problem when the viscosity is above an explicitly given bound.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 75, Issue 4, March 2012, Pages 2209–2235
نویسندگان
, ,