کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
840842 908492 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On some isometries on the Bergman–Privalov class on the unit ball
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
On some isometries on the Bergman–Privalov class on the unit ball
چکیده انگلیسی

Bergman–Privalov class ANα(B)ANα(B) consists of all holomorphic functions on the unit ball B⊂CnB⊂Cn such that ‖f‖ANα:=∫Bln(1+∣f(z)∣)dVα(z)<∞,‖f‖ANα:=∫Bln(1+∣f(z)∣)dVα(z)<∞, where α>−1α>−1, dVα(z)=cα,n(1−∣z∣2)αdV(z)dVα(z)=cα,n(1−∣z∣2)αdV(z) (dV(z)dV(z) is the normalized Lebesgue volume measure on BB and cα,ncα,n is the normalization constant, that is, Vα(B)=1Vα(B)=1). Under a mild condition, we characterize surjective isometries (not necessarily linear) on ANα(B)ANα(B), and prove that TT is a surjective multiplicative isometry (not necessarily linear) on ANα(B)ANα(B) if and only if it has the form Tf=f∘ψTf=f∘ψ or Tf=f∘ψ¯¯, for every f∈ANα(B)f∈ANα(B), where ψψ is a unitary transformation of the unit ball. The corresponding results for the case of the Bergman–Privalov class on the unit polydisk DnDn are also given. Our results extend and complement recent results by O. Hatori and Y. Iida.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 75, Issue 4, March 2012, Pages 2448–2454
نویسندگان
,