کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
841229 908504 2012 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Existence and uniqueness for nonlinear elliptic equations with lower-order terms
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Existence and uniqueness for nonlinear elliptic equations with lower-order terms
چکیده انگلیسی

We study the nonlinear Dirichlet problem for the elliptic equation div(A(x,∇u)+b(x,u))=divF in a regular domain Ω⊂RN, N>2N>2, u=0u=0 on ∂Ω. In hypothesis of Lipschitz continuity and strong monotonicity of AA, we assume that the lower order term b(x,s)b(x,s) verify |b(x,s)−b(x,t)|⩽E(x)|s−t||b(x,s)−b(x,t)|⩽E(x)|s−t| for a.e. x∈Ω and for any s,t∈Rs,t∈R, where EE is a non negative function in the Lorentz space LN,q(Ω), N⩽q⩽+∞N⩽q⩽+∞. Without any control on the norm of EE, with F∈LpF∈Lp, p>1p>1 and q<∞q<∞, we obtain existence and uniqueness result for distributional solutions u∈W1,p(Ω) whenever pp is close to two. For q=∞q=∞, uniqueness results are obtained.The main difficulty to solve the problem is due to noncoercivity of the vector field A(x,s,ξ)=A(x,ξ)+b(x,s)A(x,s,ξ)=A(x,ξ)+b(x,s). Moreover, no classical structure conditions are satisfied.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 75, Issue 2, January 2012, Pages 899–912
نویسندگان
,