کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
841297 908505 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Existence and multiplicity of solutions for a Neumann problem involving the p(x)p(x)-Laplace operator
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Existence and multiplicity of solutions for a Neumann problem involving the p(x)p(x)-Laplace operator
چکیده انگلیسی

In this paper, we study the following nonlinear Neumann boundary value problem {−div(|∇u|p(x)−2∇u)+|u|p(x)−2u=λf(x,u),x∈Ω,t∈R∂u∂v=0,x∈∂Ω,t∈R where Ω⊂RnΩ⊂Rn is a bounded domain with smooth boundary ∂Ω,∂u∂v is the outer unit normal derivative on ∂Ω∂Ω, λ>0λ>0 is a real number, pp is a continuous function on Ω¯ with infx∈Ω¯p(x)>1,f:Ω×R→R is a continuous function. Using the three critical point theorem due to Ricceri, under the appropriate assumptions on ff, we establish the existence of at least three solutions of this problem. Some known results are generalized.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 71, Issue 9, 1 November 2009, Pages 4259–4270
نویسندگان
, , ,